
M-Port Integrator Manual

1 Welcome
Welcome to RedAnt M-Port!

M-Port is a comprehensive middleware solution for Mamut Business Software. It is able to perform actions
on data ranging from XML and CSV formats to PDF, and store files, send e-mails, and print reports. Using
web services or FTP, it allows you to attach Mamut to any other platform that accepts incoming data in
XML or CSV format. In short, it is Mamut's gateway to the outside world.

Download location: http://software.redant.nl/m-port

When using a Crystal Reports workflow, the CR redistributable must be installed from:
http://software.redant.nl/cr2008.msi

2 Workflows
Generally speaking, the inner workings of M-Port are determined by installed workflows - different
workflows may mean completely different behaviours for M-Port. A workflow is a description of a data path
that specifies input, data manipulation or selection processors, and output format and location. M-Port is
designed to give access to multiple workflows, but will only execute one workflow at a time.

Workflows are defined in XML format, and consist of the following sections:

Workflow configuration;
Origin connection;
Input format;
Data processors (optionally);
Output format;
Destination connection.

When executed, a workflow follows the steps above closely:

it makes a connection to the origin;
reads in data from the origin connection specified in the input format into an intermediate format;
optionally, manipulates the data using the specified processors;
transforms the data in intermediate format to the format specified by the output format;
makes a connection to the destination ('making a connection' may consist of opening a file for
writing);
and writes the formatted data to the destination connection.

So, both the origin and destination sections contain connection settings. These will be outlined in the chapter
Connections. Both the input and output sections describe formats, outlined in a dedicated chapter called
Formats. In this manual, you will also find a full description of the intermediate format's data definition.

2.1 Configuration

http://software.redant.nl/m-port
http://software.redant.nl/cr2008.msi


In the workflow's configuration section, the following nodes can be used. Unless noted otherwise, all nodes
are required.

node name description
customer The name of the customer. This is used in the reseller's interface for customer workflows.

name
A name that describes the workflow's purpose as condensed as possible. The workflow's
name is displayed in the interface menu Workflows.

description
(optional)

The workflow's description is visible through the Info button in M-Port, and can be used to
give the customer more information on the process.

author
(optional) The workflow's author and contact information.

datatype
The central datatype of the workflow. This can be, for instance, order or contact, for
importing or exporting orders or contacts, respectively.

locale
(optional)

The workflow's locale determines decimal points (. or ,) and date formatting. Use, for
instance, nl or en.

2.2 Logging and Backups
M-Port stores a copy of all files it successfully imports and exports using FTP in a dedicated backup
directory, as well as all files transferred by e-mail and files removed from their original location after an
import. In this way, files read or created by M-Port can be investigated if needed.

2.3 Datastore location
M-Port, by default, stores its workflows in a machine-dependent storage directory. That means all users of
the application on one single machine, in principal, share the same workflows.

This setting is contained within the key HKEY_CURRENT_USER\Software\RedAnt\RedAnt M-Port, which is
created when the application is started for the first time. Using the Registry Editor (Start > Run > regedit),
you can add a new String value to that key, which is called DatastoreLocation. M-Port will then use the
specified path instead of the default location.

In addition, a machine-wide setting can be set using the key
HKEY_LOCAL_MACHINE\Software\RedAnt\RedAnt M-Port's String value DatastoreLocation, which takes
precedence over the current user key mentioned above. This key is not created automatically. On 64-bit
systems, this key is located at HKEY_LOCAL_MACHINE\Software\Wow6432Node\RedAnt\RedAnt M-Port.

You need to restart M-Port in order to effectuate changes in the datastore location.

Default datastore locations

operating system location
Windows XP
Windows Server 2003 C:\Documents and Settings\All Users\Application Data\RedAnt\M-Port

Windows Vista
Windows 7
Windows Server 2008

C:\ProgramData\RedAnt\M-Port

The entire folder needs to be copied for back-up purposes.



2.4 Multiple Companies on One Machine
By default, all M-Port users on one single machine share the same workflows. If this functionality is not
desired, for any reason, you can use the DatastoreLocation key mentioned above. Another approach can
be taken to limit the visible workflows for any particular customer.

To show only applicable workflows, browse to the HKEY_CURRENT_USER\Software\RedAnt\RedAnt M-Port
key in the Registry Editor and create a new String value called Customer. When created, M-Port limits
visible workflows to only those which have the exact same customer name in the customer-node.

You need to restart M-Port in order to effectuate changes in the Customer name.

2.5 Debug Mode
To allow easy access to M-Port's isolated storage, you can enable Debug Mode. This enables the M-Port
Debug menu, in which you can go directly to the isolated storage location and execute queries to a Mamut
database.

To enable Debug Mode, browse to the HKEY_CURRENT_USER\Software\RedAnt\RedAnt M-Port key in the
Registry Editor and create a new DWORD (32-bit) value called Debug. The value should be 1. You need to
restart M-Port in order to effectuate changes in Debug Mode.

Alternatively, you can press the F6 key when no workflow has been loaded. Note that this doesn't work
when you have only one workflow, because that will be automatically selected.

3 Connections
A connector, be it origin or destination, creates a connection to a data location. Such a location may be
Mamut, but also a file, a webservice or a database. The Mamut connector, for instance, creates a connection
to a particular Mamut company database. If a connector is used as an origin connection, the connection will
be made for reading, whereas a destination connection is used for writing (and, where required, reading too).

A connector has a type-attribute, one of:

Mamut
E-mail
File
Folder
FTP
MySQL
SQL (for Microsoft SQL Server)
Web (for SOAP webservices)

Optional and required attributes for these are specified below. To allow an end-user, instead of you as an
integrator, to specify a connection property, the string {user} may be used to denote such fields.

3.1 Email
Can be used only for a destination connection. Sends an e-mail message. In both the to, from, sender,
subject, message and filename fields, you can use field names between curly braces, such as



{Person.FirstName} and {Order.InvoiceID}.

node
name description

server The SMTP server that is used to send the message.
user
(optional) The username for login.

password
(optional) The password to use for the connection.

from The e-mail address the message appears to be sent from.
sender The name of the sender of the message.

to
The e-mail address of the recipient of the message. If you specify a field name between curly
braces here, your output data will be split for all unique values in this field, and a separate e-mail
message will be sent to all of the e-mail addresses so found, with only their respective data.

subject The e-mail message's subject.
message The text inside the e-mail message.

filename
The file name of the attachment. May contain {timestamp}, which will be replaced by the current
date and time in the format yy-MM-dd-HHmmss, or (a) field code(s) that are replaced by the
actual data, such as {Order.OrderID}.

split
(optional)

Contains the name of a field on which to split output data. If specified, will export multiple e-
mails, if a field is included in the specified to address.

3.2 File
Read or write a file. All nodes are optional; when no path or filename are given, the user will need to select
it from the M-Port interface.

node name description
path The path in which a file is created.

filename

The name of the file that is created. If used in a destination connection, may
contain {timestamp}, which will be replaced by the current date and time in the
format yy-MM-dd-HHmmss, or (a) field code(s) that are replaced by the actual
data, such as {Order.OrderID}.

encoding
Determines the encoding of the file, one of ANSI, ASCII, UTF8, UTF16
(Unicode), or Windows1252. If none specified, UTF8 is assumed.

delete_original_file
When importing, if this node contains true, removes the original file (a backup is
stored in M-Port's backup folder). This setting is ignored when the workflow is
run as a scheduled task.

split
Contains the name of a field on which to split output data. If specified, will export
multiple files if a field code is included inside the specified filename.

3.3 Folder
Read multiple files from a folder.

node name description
path The path from which files should be read.
filemask Determines which files are read, for example *.xml reads all XML files from the



filemask

given path.

encoding (optional) Determines the encoding of the files, one of ANSI, ASCII, UTF8, UTF16
(Unicode), or Windows1252. If none specified, UTF8 is assumed.

delete_original_files
(optional)

If this node contains true, removes the original files (a backup is stored in M-
Port's backup folder). This setting is ignored when the workflow is run as a
scheduled task.

3.4 FTP
Reads or write to and from an FTP server.

node name description
server The server name or IP address.
user The username for login.
password The password to use for the connection.

path (optional) Path to read or store the file from. Prefix the path with a / to specify the full path
from the root, or without the / to give a relative path from the initial location.

filename

The name of the file that is created. If used in a destination connection, may
contain {timestamp}, which will be replaced by the current date and time in the
format yy-MM-dd-HHmmss, or (a) field code(s) that are replaced by the actual
data, such as {Order.OrderID}.

mode(optional) Should contain either append or overwrite. If not specified, overwrite is assumed.
enablessl(optional) If this node contains true, a secure SSL connection to the server is attempted.

encoding (optional) Determines the encoding of the file, one of ANSI, ASCII, UTF8, UTF16
(Unicode), or Windows1252. If none specified, UTF8 is assumed.

delete_original_file
(optional)

When importing, if this node contains true, removes the original file (a backup is
stored in M-Port's backup folder).

split (optional) Contains the name of a field on which to split output data. If specified, will export
multiple files if a field is included in the specified filename.

3.5 Mamut
Read or write a Mamut-database. In order to use a Mamut Connector, Mamut needs to be installed on the
same machine as M-Port. All nodes are optional; when no instance or (system) database is given, the user
will need to select those from the M-Port interface.

node name description

instance

The name of the server and instance that Mamut is located on, for example,
SERVER/MAMUT. If you specify {user} here, the user will be presented with a SQL
server network browser to select a database instance. In addition, the contents of the
database-node will be ignored and {user} will be assumed.

systemdatabase
The number of the system database to connect to. If you specify {user} here, the user will
be presented with a list of system databases to pick from. If no system database number is
specified, 1 will be assumed.

database
The number of the company database to connect to. If you specify {user} here, the user
will be presented with a list of company databases to pick from.



3.6 MySQL
Read from or write to a MySQL-database. In order to use the MySQL connector, you will need to install
MySQL Connector/Net 6.1.3, from http://dev.mysql.com/downloads/connector/net/6.1.html. The MySQL
connector is probably best used using the Query format.

node name description
server The name or IP address of the server you want to connect to, for example, mysql.company.org.
database The name of the database to connect to.
user User name.
password Password.

3.7 SQL
Read from or write to a Microsoft SQL Server-database. The SQL connector is probably best used using the
Query format.

node
name description

instance
The name of the server and instance you want to connect to, for example,
SERVER/COMPANY.

database The name of the database to connect to.

3.8 Web
Read from or write to a SOAP webservice.

node name description
server The server name or IP address (leave out the 'http' prefix).
enable_ssl (optional) To connect over HTTPS instead of HTTP, put 'true' in this field.

request (optional) When retrieving data from a webservice, this field contains the XML that is posted
to retrieve information.

action (optional) The SOAP action.
expected_response
(optional)

The response that is returned when posting to a webservice, is checked to contain
this text.

split (optional) Contains the name of a field on which to split output data. If specified, will do
multiple posts to the webservice.

4 Formats
In general terms, a format is a data definition. It is a kind of dictionary, that translates incoming data to the
M-Port intermediate format, or the intermediate format to outgoing data.

Below, all settings for a node will be specified. An input or output format at least contains the type
attributes, which is one of:

CSV;

http://dev.mysql.com/downloads/connector/net/6.1.html


CSV;
Fixed;
Mamut;
Query (for performing database commands);
Report (for exporting to HTML, PDF, Microsoft Excel and Microsoft Word through Crystal Reports);
XML;
Word.

4.1 CSV
Comma, semicolon, of differently separated format.

node name description

template
Specifies the name of the CSV file you'll be using as a document template. Do not insert the
.csv extension, as this will be added automatically.

delimiter
(optional)

The delimiter of the CSV file, for example <delimiter>,</delimiter. If no delimiter is
specified, ; will be assumed.

Template

Product identification;Description;Can be ordered;Price
{Product.ProductID};{Product.Description};YES of course!;{Product.Price}

This template allows you to read and write CSV files that follow this specification. If two rows are specified
inside the CSV, we assume the first is the header row and the second contains M-Port field codes. If the
CSV template contains only one row, we assume the CSV file contains no header row. If a header row is
specified and the CSV format is used for importing, the first row of the CSV file is ignored. If it is specified
and the CSV format is used for exporting, it will be outputted as the first row in the CSV file.

4.2 Mamut

node name description

action (optional)

Only applies to output formats. If this node contains the value insert, only new data
will be inserted into Mamut, leaving existing data unmodified. If replace is specified,
or if the node is not present, items are created if they do not exist, or updated if they do.
Finally, if update is specified, only existing records will be updated and no new entries
will be created.

invert_negatives
(optional)

If this node contains the value true, negative amounts and the corresponding prices will
be inverted. Please see below for an explanation.

force_columns
(optional)

When used as an origin format, forces only the supplied columns (separated by a
space) to be used for input.

Query modificators
(optional)

You can modify the M-Port generated query using the nodes select, limit, where,
order_by and join. Note that knowledge of the Mamut database internals is required
to properly use this functionality.

All required information for reading or writing this data is built in M-Port. Hence, all relevant data as
described in the M-Port intermediate format, can be written to and from Mamut, unless noted otherwise.

Example

<where>[invoice].[standard] = 1 AND [registered].[standard] = 1 AND [g_cpers].[inactiv] =



<where>[invoice].[standard] = 1 AND [registered].[standard] = 1 AND [g_cpers].[inactiv] =
0</where> (Voor alleen het standaard adres en actieve contactpersonen)

4.3 Query
You can read data from a database, or write to it, using the Query format. You can manually enter the SQL
query that is to be used, directly in the workflow.

node name description
query Specifies the SQL query.
start_statement
(optional)

Specifies a SQL statement that will be executed once, at the beginning of the session,
before any other query will be done (except when testing workflows).

end_statement
(optional)

Specifies a SQL statement that will be executed once, at the end of the session, after all
other queries have been done (except when testing workflows).

When reading, you need to use M-Port field syntax (will be rewritten to discard {} and rewrite dots to
underscores). For example:

SELECT
id AS {ORDER.OrderID},
reference AS {ORDER.Reference}
FROM TABLE

This will retrieve the data in the columns id and reference into M-Port's data model, in the Order table, fields
ID and Reference.

When writing data, you can insert fieldcodes in the SQL query, which will be substituted by M-Port when
executing the query.

INSERT INTO invoiceTable SET reference = "{order.Reference}"
WHERE id = {ORDER.InvoiceID}

4.4 Report
You can export data to PDF, HTML, Microsoft Excel or Microsoft Word using Crystal Reports. The Crystal
Reports modules come bundled with M-Port, but M-Port, as nearly all Crystal Reports-enhanced
applications, does not include a report designer. Create a Crystal Reports in your designer using M-Port's
Model as the data source. You can then save your report as a .rpt file. This file is used as the template in M-
Port.

node
name description

template
Specifies the name of the Crystal Report you'll be using as a document template. Do not insert
the .rpt extension, as this will be added automatically.

type
As a report type, you can specify one of doc, html, pdf, xls, for exporting to Word, HTML, PDF,
or Excel respectively.

4.5 Word
You can export your data to a Microsoft Word document only if you have Word installed on the computer
M-Port runs on. Create a Word template by saving your Word document as a document template (.dot) and
inserting merge fields. In Word 2003, these can be inserted using Insert > Field..., Select Merge field from



inserting merge fields. In Word 2003, these can be inserted using Insert > Field..., Select Merge field from
the list, and type a field code in the Field name field. Word uses the format Datatype_Field for M-Port
merge fields instead of Datatype.Field as is customary in other templates.

If you want to iterate through all the rows in your data, create a Word table and make sure the last field in
the row you want to iterate is a {NEXT} field (Select Next from the Field names list, don't type this as a
merge field name!).

If your M-Port has debug mode enabled, you can export a CSV file with all possible field codes. You can
use this CSV file as a data source in Word, so you can select all possible fields from a drop-down list instead
of typing them in.

node
name description

template
Specifies the name of the Word template you'll be using as a document template. Do not insert
the .dot extension, as this will be added automatically.

split
(optional)

Contains the name of a column on which to split output data. If specified, will create and export
to multiple output connectors.

4.6 XML
Extensible Markup Language format, that is easily readable for both machines and humans alike.

node name description

template
Specifies the name of the XML file you'll be using as a document template. Do not
insert the .xml extension, as this will be added automatically.

write_short_tags
(optional)

If this node contains the value false, abbreviated empty XML tags (e.g., <short />)
will be written as regular empty tags (<short></short>).

write_empty_tags
(optional)

If this node contains the value false, empty XML tags (e.g., <short></short>) will be
stripped from the output. This won't happen if the tag contains attributes!

Template

<?xml version="1.0" encoding="ISO-8859-1"?>
<orders>
 <order id="{Order.OrderID}">
  <orderline id="{Order.LineNumber}">
   <product id="{Order.LineProductID}" price="{Order.LinePrice}">
    <description>{Order.LineProductDescription}</description>
   </product>
  </orderline>
 </order>
</orders>

Thus, an XML definition file is a valid XML-file, in which the value of attributes or textnodes contain an M-
Port field code. Please note that M-Port currently is not capable of handling XML files that contain duplicate
nodes on one level, for example, a <Reference>-node that contains two <Data>-nodes that cannot be
distinguished. In this case, you will get duplicate data rows for every duplicate occurrence.

Merge nodes

M-Port tries to fit generated lines into the output file as neatly as possible. In the example above, order is
used as the input. So, each line of the order contains the order header fields, such as {Order.OrderID}. M-



used as the input. So, each line of the order contains the order header fields, such as {Order.OrderID}. M-
Port tries to put data that belongs to the same order ID under the respective node. The effect is that output
won't be like this:

<?xml version="1.0" encoding="ISO-8859-1"?>
<orders>
 <order id="1">
  <orderline id="1.1">
   <product id="STRAWBERRY" price="1.95" />
  </orderline>
 </order>
 <order id="1">
  <orderline id="1.2">
   <product id="BANANA" price="2.95" />
  </orderline>
 </order>
 <order id="2">
  <orderline id="2.1">
   <product id="LEMON" price="3.95" />
  </orderline>
 </order>
</orders>

But rather will be formatted like this:

<?xml version="1.0" encoding="ISO-8859-1"?>
<orders>
 <order id="1">
  <orderline id="1.1">
   <product id="STRAWBERRY" price="1.95" />
  </orderline>
  <orderline id="1.2">
   <product id="BANANA" price="2.95" />
  </orderline>
 </order>
 <order id="2">
  <orderline id="2.1">
   <product id="LEMON" price="3.95" />
  </orderline>
 </order>
</orders>

M-Port utilizes attributes and text nodes that are direct children of the node that is to be matched.

Simulating unique ID's

Some XML definitions do not contain the unique attribute of the datatype (for example, for orders, that
would be {Order.OrderID}). That is inconvenient, because it prevents M-Port from properly merging the
order nodes.

To solve this problem, you can add a simulation node: <mport_unique_id>. This node has to be inserted in
the XML template, but will not be exported to the output.

5 Field Codes
5.1 Activity
All the field codes below can be used in the format {Activity.xxx}. You can access information regarding the



All the field codes below can be used in the format {Activity.xxx}. You can access information regarding the
first associated contact or contact person using {Contact.xxx} and {Person.xxx}. In addition, you can access
information of the responsible employee using {Employee.xxx}.

code description
activity subject
user ID of the creator of the activity (export only)
full name of the creator of the activity (export only)
employee ID of the responsible employee
customer ID of the associated contact
activity registration date + time
activity start date + time
activity end date + time
activity type (will not be automatically created if new)
activity type (number from standard register)
status (when importing, will be created if new)
status ID (number from standard register)
project
project ID
activity priority: 1 = None, 2 = High, 3 = Medium, 4 = Low
finished (boolean; use true or false)
activity notes

5.2 Contact
All the field codes below can be used in the format {Contact.xxx}. You can access information regarding the
default contact person using {Person.xxx}.

code description
customer name
customer ID
supplier ID (exporting only, use IsSupplier = true to generate a supplier number)
customer (boolean; use true or false)
supplier (boolean; use true or false)
partner (boolean; use true or false)
private (boolean; use true or false)

, phone numbers
, fax numbers

e-mail address
www
language (when importing, will be created if new)
language ID (number from standard register)
organisation number (i.e., KvK-nummer)
department (when importing, will be created if new)
department ID (number from standard register)
List of comma-separated groups (i.e., Group A, Group B). When importing, make sure these groups



List of comma-separated groups (i.e., Group A, Group B). When importing, make sure these groups
already exist in the standard register. Existing groups for the contact will be removed when you
import groups.
street name and number
zip code
city
region
country name (use only for exporting)
two-letter country ISO code
whether or not the contact is a main office (export only; boolean -- use true or false)
name of the main office if this contact is a branch office (export only)
customer ID of the main office, if this contact is a branch office
status (when importing, will be created if new)
status (number from standard register; preferred for importing)
line of business (when importing, will be created if new)
line of business (number from standard register; preferred for importing)
category (when importing, will be created if new)
category (number from standard register; preferred for importing)
response type (when importing, will be created if new)
response type ID (number from standard register; preferred for importing)
username (i.e., demo) of an employee (see User administration in Mamut)
user id of an employee (export only)
project
project ID (number; preferred for importing)
name of the contact's primary bank
number of the contact's primary bank account
owner of the primary bank account
primary bank account type (1 - Post, 2 - Bank)
currency (three letter ISO code)
currency ID (number from standard register)
type of reminder (use for direct debit, 0 - (none), 10 - Payment Reminder, 31 - Factoring, 41 - Direct
debit)
VAT number
discount percentage
credit limit (for a client)
whether or not the account is on hold (export only; boolean - true or false)
payment terms
payment terms (number from standard register; preferred for importing)
delivery method (export only)
delivery method ID (number from standard register, w_delitypes) (export only)
delivery terms (export only)
delivery terms ID (number from standard register) (export only)
VAT code for sales
(2 - BTW plichtig, 3 - Vrijgestelde klant, 4 - Export buiten EU, 5 - Export EU, 6 - Export naar EU-
derden)
VAT code for purchasing



VAT code for purchasing
(1 - Vrijgesteld, 2 - BTW plichtig, 7 - Import binnen EU, 8 - Import buiten EU, 9 - EU driehoeks
import)
contact memo

5.3 Currency
All the field codes below can be used in the format {Currency.xxx}.

code description
currency symbol (i.e., NOK)
divider (usually 1)
exchange rate for foreign currency (i.e., 1 NOK ≈ 0.12 EUR)

5.4 Employee
All the field codes below can be used in the format {Employee.xxx}.

code description
employee id (required when importing)
alias or user name ("employee id 2")
full name (first + middle + surname) (export only)
first name
middle name
surname
Initials
department (when importing, will be created if new)
department ID (number from standard register)
gender (numeric; 1 - male, 2 - female)
(home) phone number
cell phone number
e-mail address

5.5 Journal Transactions
All the field codes below can be used in the format {Journal.xxx}. When exporting, you can access contact
properties of journals using {Contact.xxx}, and the associated project information using {Project.xxx}.
Imported journals will show up in Mamut at the Journal Entry page (Inboeken in Dutch). If you click the
settings button, you can choose to Show journals for all users. This will show all imported transactions.

When importing journal transactions, it is required to give all lines of one transaction the same Key. This
should be negative in order to allow Mamut to generate its own ID, but still be equal for all related lines. If
not, Mamut will give an API error that the journal is not balanced.

code description
Header journal ID

registration date



period
year
day book (letter code as displayed in Mamut, for instance B = bank)
day book ID (number from standard register)

Lines entry number (export only)
account number (be sure to include leading zeroes)
description
currency code (i.e., EUR)
currency ID from g_currency
exchange rate for this currency
saldo
due date
vat code
customer ID
invoice ID
department
department ID
cost layout (export only)
cost center group (export only)
cost center (export only)

5.6 Order
All the field codes below can be used in the format {Order.xxx}. When exporting, you can access product
properties of orderlines using {Product.xxx}, the contact information using {Contact.xxx}, and the default
contact person's information using {Person.xxx}. When importing, you can check/create new customers
using {Contact.xxx}.

When importing orders, it is required to give all lines of one order the same OrderID. This should be
negative in order to allow Mamut to generate its own incremental order number, but still be equal for all
order lines.

code description
Header order ID

invoice ID
associated invoice ID (i.e., the original invoice ID for a credit note) (export only)
associated customer's ID
order status (see g_orderstatus) (export only)
use gross prices (including VAT) for the order lines (import only)
multiline textfield containing the invoice address entered in the Mamut interface
multiline textfield containing the invoice address entered in the Mamut interface
order date (export only)
invoice date
production date (export only)
due date (export only)



delivery date
our reference (export only: lastname from employee register)
employee ID of our reference
your reference
order reference
project
project id (number from standard register)
department (when importing, will be created if new)
department id (number from standard register)
order memo text
pick list text
delivery note text
note in 'order information' (export only)
sales status (export only)
net total (export only)
gross total (export only)
VAT total (export only)
discount total (export only)
open balance for this invoice (export only)
payment terms
payment terms ID (number from standard register)
direct debit (automatische incasso) (boolean; use true or false)
delivery method
delivery method ID (number from standard register, w_delitypes)
delivery terms (export only)
delivery terms ID (number from standard register) (export only)
response type
response type ID (number from standard register)
freight bill text
service order text (left pane)
service order text (right pane)
number of items (export only)
number of pallets (export only)
total weight, including order lines and additional order weight (export only)
total volume, including order lines and additional order volume (export only)
shipment number
whether or not the order is ready for invoicing (boolean; use true or false)
whether or not the order is picked (boolean; use true or false) (export only)
whether or not a credit note has been generated using the X button (boolean; use true of false
- export only)
number of order lines in this order (export only)

Lines number of this order line (export only)
type of this orderline (export only; 0 = text, 1 = product, 2 = product bundle, 3 = part of
product bundle)
order line product ID



order line product ID
order line product description
order line text
order line product price
order line quantity ordered
order line quantity to deliver
order line quantity delivered (export only)
order line discount price (export only)
order line discount (%)
order line project
order line project id (number from standard register)
order line department
order line department id (number from standard register)
order line tracing number
order line delivery date
order line net price (export only)
order line gross price (export only)
order line VAT amount (export only)
order line VAT rate (export only)
order line VAT code (number from standard register)
order line warehouse

5.7 Person
All the field codes below can be used in the format {Person.xxx}. When exporting, you can address the
associated contact information the person belongs to using {Contact.xxx}.

code description
Unique contact person ID (required when, during imports, updating existing contacts in Mamut)
customer id to which this person belongs (required when importing)
full name (first + middle + surname) of the person (export only)
first name
middle name
surname
initials
salutation

, titles
, phone numbers
, fax numbers
, cell phone numbers
, e-mail addresses

homepage
department (when importing, will be created if new)
department ID (number from standard register)
project (when importing, will be created if new)



project ID (number from standard register)
List of comma-separated groups (i.e., Group A, Group B); (export only)
job title (when importing, will be created if new)
job title ID (number from standard register)
birthdate
rank (when importing, will be created if new)
rank ID (number from standard register)
ID, such as the social security number or the Dutch BSN
Active or incative (Export only)
Default contact person or not (Export only)
street name and number
zip code
city
region
two-letter country ISO code
memo field

5.8 Product
All the field codes below can be used in the format {Product.xxx}.

code description
Codes product ID

product name / description
EAN code
commodity code
the industry's product no.
EU Intrastat code
parent product ID (export only)

Variants whether or not this product is a main product for variants (export only; boolean; use true
or false)
whether or not this product is a variant of another product (export only; boolean; use
true or false)

Product
Bundles

whether or not this product is composed of other products (export only; boolean; use
true or false)
whether or not this product is part of a structure (export only; boolean; use true or false)
structure this component belongs to, when inside a structure (Sales price and purchase
price for the parent product will not be automatically updated)
quantity the article occurs inside a structure

Properties weight
weight unit (when importing, will be created if new)
weight unit (number from standard register)
unit description (when importing, will be created if new)
unit (number from standard register)
quantity



quantity

volume
volume unit (when importing, will be created if new)
volume unit (number from standard register)
delivery time (in days)
product groups (when importing, will be created if new)
product group ID's (numbers from standard register)
product category (when importing, will be created if new)
product category ID (number from standard register)
project (when importing, will be created if new)
project ID (number from standard register)
department (when importing, will be created if new)
department ID (number from standard register)

Settings product is a stock item (boolean; use true or false)
product is work/service (boolean; use true or false)
product is a resource (boolean; use true or false)
product is a campaign product (boolean; use true or false)
required serial number for receiving goods and withdrawing goods (boolean; use true or
false)
required consignment number for receiving goods and withdrawing goods (boolean; use
true or false)
required best before date for receiving goods and withdrawing goods (boolean; use true
or false)

Price price
purchase price
costs
cost price (export only)
recommended sales price excl. VAT
override cost price in sales module (boolean; true or false)

Individual discount percentage for an individual customer (export only; requires one or more
contact-fields)
price for an individual customer, not taking into account the discount percentage (export
only; requires one or more contact-fields)
price for an individual customer (export only; requires one or more contact-fields)

Surcharges surcharge ID (number from standard register)
surcharge group text (when importing, make sure this text is unique in Mamut)
surcharge description text (when importing, make sure this text is unique in Mamut)

VAT VAT ID for sales (number from standard register)
VAT rate for sales (export only)
VAT ID for purchases (number from standard register)
VAT rate for purchases (export only)

Accounts Balance sheet account for stock value
Account for stock change
Cost account for product cost
Sales account liable to VAT
VAT exempt sales N/C



VAT exempt sales N/C

Sales account export outside EU
Sales account export to EU

Notes product information
sales information
technical information
support information
production information
other information
automatically transfer product information to product lines in sales order (boolean; use
true or false)

Supplier default supplier's name
ID of default supplier
product ID of default supplier
EAN code of default supplier
Delivery time of default supplier
default supplier's product description
use default supplier's product description on orders (boolean; use true or false)
purch. price in default supplier's currency
default supplier's recommended sales price
discount percentage on purchase

Stock default warehouse id (number from standard register; when importing, only one
warehouse can be imported per product in one run)
location inside warehouse (only for standard warehouse and standard location, M-Port
can only import one location)
ID from location inside warehouse (only for standard warehouse and standard location,
M-Port can only import one location)
stock in default warehouse (import: integer numbers only)
combined stock in all warehouses (export only)
combined available stock (stock - to customers + from vendors) in all warehouses
(export only)
minimal stock in default warehouse (import: integer numbers only)
maximum stock in default warehouse (import: integer numbers only)
next delivery date (based on outstanding purchase orders) (export only)
stock order level in default warehouse (import: integer numbers only)
stock order quantity for default warehouse (import: integer numbers only)

Webshop show product on webshops (boolean; use true or false)
brief default description on webshops, may contain HTML
detailed default description on webshops, may contain HTML

Misc link to picture (path)
link to alternative picture (path)
product website
whether the product is an inactive product (boolean; use true or false). Only active
products are exported, unless this field is part of the output format, in which case also
inactive products are exported.
if the product is inactive, this product is used as a replacement (export only)



5.9 Project
All the field codes below can be used in the format {Project.xxx}. When importing, either supply an existing
project ID or existing project name, and this project will be updated. Otherwise, it will be created.

code description
Identifiers project ID

name
class
description

Properties name of the responsible employee for this project (export only)
employee number of the responsible for this project (export only)
project status (when importing, will be created if new)
project status ID (preferred for importing; number from standard register)
project completion (when importing, will be created if new)
project completion ID (preferred for importing, number from standard register)
project note

Dates planned start date
planned end date
start date
end date

Budget number of hours registered
number of invoiceable hours
number of paid hours
total transferrable to sales and invoicing
total transferrable to payroll
total invoiced
total stock invoiced
total services invoiced
total invoiced other
total purchases
operational revenue
operating expenses

5.10 Purchase order
All the field codes below can be used in the format {PurchaseOrder.xxx}. When exporting, you can access
product properties of orderlines using {Product.xxx}, the contact information using {Contact.xxx}, and the
default contact person's information using {Person.xxx}. When importing, you can check/create new
customers using {Contact.xxx}.

code description
Header primary key of invoice order

primary key of contact
id of purchase order



id of purchase order

status of purchase order
id of customer
id of vendor
invoice address
delivery address
register date (export only)
order date (export only)
date of delivery
date of last change (export only)
your reference
net total (export only)
gross total (export only)
vat total (export only)
discount total

Lines line id
product's primary key
id of product

5.11 Timesheet
All the field codes below can be used in the format {Timesheet.xxx}. When exporting, you can access
contact information of the contact associated with a timesheet line using {Contact.xxx}.

code description

Header timesheet id (required when importing, use -1, -2, -3 etc to separate multiple timesheets in
one import)
timesheet description

Lines employee ID (numeric)
timesheet date
start time on this timesheet line
end time on this timesheet line
number of hours worked
customer ID
project ID (number from standard register)
department ID (number from standard register)
product number
time line description
time type (number from standard register)
time type
transfer timesheet line to project
transfer timesheet line to order
transfer timesheet line to payroll



6 Processors
A processor processes input data, before forwarding data to the output-format. A workflow-XML file is
necessary to specify configuration settings for a given processor.

6.1 AddLines
This function can be used to add an extra line to groups of rows.

Configuration

key_column: field that is used to identify which rows are grouped together
sum_fields (optional): fields in the row whose values need to be added. If not specified, all data
columns that contain numeric data are summed.
no_summing (optional): when true, do not sum any data column (boolean; use true or false)
where (optional): specifies which rows are processed for summing
column (optional): in this column, a value is stored based on the specified template, so added rows can
be differentiated from original data
template (optional): works like the Merge-processor's template, may contain M-Port field codes and
is required when column is specified
force_double (optional): treat all values in sum_fields as double (floating point) fields (boolean; use
true or false)

Example

  <processor type="AddLines">
    <key_column>order.OrderID</key_column>
    <sum_fields>order.LineQuantity product.Weight</sum_fields>
    <column>temp.IsAdded</column>
    <template>1</template>
  </processor>

6.2 AddressSplit
Allows a user to split a Mamut order address text field, composing of multiple lines, into separate fields. If
these fields already contain an address which perfectly matches the address in the address text field, no
dialog will be presented to the user.

Configuration

id_column: specifies the ID on which to split orderlines, usually Order.OrderID or Order.InvoiceID
address_column: the multiline address text field of the order, for instance Order.DeliveryAddress or
Order.InvoiceAddress
street_column, zip_column, city_column, countryiso_column: the separate address fields. The
country ISO column contains the two-letter ISO code that's used within Mamut, e.g.
Contact.DeliveryCountryISO.

Example (uses a temp table)



<processor type="AddressSplit">
  <id_column>order.orderid</id_column>
  <address_column>order.deliveryaddress</address_column>
  <street_column>temp.deliverystreet</street_column>
  <zip_column>temp.deliveryzip</zip_column>
  <city_column>temp.deliverycity</city_column>
  <countryiso_column>temp.deliverycountryiso</countryiso_column>
</processor>

Note: when working on orders, keep in mind to use a temp table for the address fields! If you use the
Contact.*-fields, you will change the address of all orders of that customer for this workflow execution to
the first split address.

6.3 Concat
Adds data to a specified column.

Caution If the given data in a specified column is not of type string the column is converted to string. The
consequence of this action is that numerical Select-processors can't be applied, e.g.: (`invoiceid` > 10) is
impossible when the column is converted!

Configuration-nodes

column: the column that has to be edited
prepend: prepending text (optional)
append: appending text (optional)

Example

<processor type="Concat">
  <column>product.productid</column>
  <prepend>1234</prepend>
  <append>000000</append>
</processor>

The result of this action would be something like the following: `1234DATA000000`.

6.4 KeyValue
Apply if/then/else business logic using queried key/value pairs.

Configuration

query: query to retrieve key/value pair table from the database
key_column: the column that keys correspond to
value_column: the column the values correspond to and results will be written to
if: logical expression that will be evaluated, determining whether the results from 'then' or 'else' will
be used as result
then: expression that will be evaluated if the 'if' test succeeds
else: expression that will be evaluated if the 'if' test fails
calculation: will determine the new value in key/value pair table after results have been evaluated
(use {value} for the initial value or {result} for the value from 'then' or 'else')

Example: Used for applying readily available stock as 'to be delivered' in open orders



  <processor type="KeyValue">
    <query><![CDATA[
      SELECT g_prod.PRODID,
      ISNULL((SELECT SUM([g_storelink].[stock] - [g_storelink].[tocustomers]) FROM [g_storelink] WHERE [g_storelink].[fk_product] = [g_prod].[pk_prodid]
      GROUP BY [g_storelink].[fk_product]), 0)
      FROM g_prod
    ]]></query>
    <key_column>order.LineProductID</key_column>
    <value_column>order.LineQuantityToDeliver</value_column>
    <if><![CDATA[{value} >= {order.LineQuantityToDeliver}]]></if>
    <then><![CDATA[{order.LineQuantityToDeliver}]]></then>
    <else><![CDATA[0]]></else>
    <calculation><![CDATA[{value} - {result}]]></calculation>
  </processor>

First, this retrieves products and available stock as key/values from the database, using the query. This gives
a data table like this:

ART1   15
ART2   20
ART3   -3

Example: Used for applying readily available stock as 'to be delivered' in open orders and works with
negative stock

  <processor type="KeyValue">
    <query><![CDATA[
      SELECT g_prod.PRODID,
      ISNULL((SELECT SUM([g_storelink].[stock] - [g_storelink].[tocustomers]) FROM 
 
[g_storelink] WHERE [g_storelink].[fk_product] = [g_prod].[pk_prodid]
      GROUP BY [g_storelink].[fk_product]), 0)
      FROM g_prod
    ]]></query>
    <key_column>order.LineProductID</key_column>
    <value_column>order.LineQuantityToDeliver</value_column>
    <if><![CDATA[Math.Max(0, {value}) >= {order.LineQuantityToDeliver}]]></if>
    <then><![CDATA[{order.LineQuantityToDeliver}]]></then>
    <else><![CDATA[Math.Max(0, {value})]]></else>
    <calculation><![CDATA[{value} - {result}]]></calculation>
  </processor>

For each row in the data, the following steps are then taken:

The key_column (i.e., the product ID) is used to lookup a value (i.e., the available stock) in this table.
If the if-expression succeeds, the value_column (the quantity to deliver) is set to the result of the then-
expression. If it fails, it's set to the result of the else-expression, in this case, 0.
Finally, the value in the key/value data table is changed using the result of the calculation-expression.

In this case, let's look at order lines that contain ART2 (currently, 20 in stock). Suppose the first order line
contains 30 ART2's. The available stock is not enough to satisfy this order (if: 20 >= 30, fails), so its
quantity to deliver will be set to 0 (else) and the new value in the key/value data table is set to 20 - 0
(calculation). Now suppose the second order line contains 15 ART2's. In that case, if succeeds (20 >= 15),
so the quantity to deliver is set to 15 (then) and the new value in the key/value data table will be 5 (20 - 15).
In that case, if the third order line contains more than 5 items, the quantity to deliver will be set to 0, et
cetera.



6.5 LookUp
Looks up values in the Mamut database, based on an SQL query supplied in the processor.

Configuration

to_column: the column in which the result of the query will be placed
query: an SQL query on the Mamut database, containing field names enclosed in curly braces, e.g.
{Order.InvoiceID}
default_value (optional): specifies a default value in case the query did not return a result. You can
use field names for the default value as well, such as {Order.OrderID}.

Example (looks up order ID based on reference)

<processor type="LookUp">
  <to_column>order.orderid</to_column>
  <query>SELECT orderid FROM g_order WHERE reference = '{order.reference}'</query>
  <default_value>0</default_value>
</processor>

Example 2 (looks up contact person ID based on first name, last name and associated customer ID)

<processor type="LookUp">
  <to_column>person.Key</to_column>
  <query><![CDATA[
    SELECT cpersid
    FROM g_cpers
    LEFT JOIN g_contac ON g_contac.contid = g_cpers.contid
    WHERE firstname LIKE '{person.FirstName}' AND lastname LIKE '{person.Lastname}' AND custid = {person.CustomerID}
 ]]></query>
 <default_value>{person.Key}</default_value>
</processor>

Example 3 (looks up the value of the custom field 'Branchecode', based on a customer ID)

<processor type="LookUp">
  <to_column>temp.Branchecode</to_column>
  <query><![CDATA[
    SELECT fieldvalue
    FROM g_cfield
    LEFT JOIN g_clisys ON g_cfield.fieldname = g_clisys.nr AND g_clisys.id = 133
    LEFT JOIN g_contac ON g_contac.contid = g_cfield.contid
    WHERE g_cfield.cpersid IS NULL
    AND g_clisys.descr LIKE 'Branchecode'
    AND g_contac.custid = {contact.CustomerID}
]]></query>
</processor>

Example 4 (looks up a customer ID based on the value in the custom field 'EAN code')



<processor type="LookUp">
  <to_column>contact.CustomerID</to_column>
  <query><![CDATA[
    SELECT TOP 1 custid
    FROM g_contac
    LEFT JOIN g_cfield ON g_cfield.contid = g_contac.contid
    LEFT JOIN g_clisys ON g_cfield.fieldname = g_clisys.nr AND g_clisys.id = 133
    WHERE g_cfield.cpersid IS NULL
    AND g_clisys.descr LIKE 'EAN code'
    AND g_cfield.fieldvalue = '{temp.EANCode}'
]]></query>
</processor>

6.6 Match
Compares import data to existing records in your database. If a perfect match on a number of columns is
found, the data is matched to this particular record. In other cases, you can manually select to either:

update an existing record (the closest match is automatically suggested by the processor), or
import the data as a new record, or
not import the data at all.

Configuration

datatype: specifies the datatype on which this processor operates
from_column: source for values to select as destination
match_columns: column(s) on which to look for perfect matches (these need to exist in both the result
of the datatype query and in the input data)
match_data_for (optional): column for which value should be equal to be considered match data
to_column: destination value
display_string: string template that is displayed in the match dialog
show_perfect_matches (optional): if true, handle perfect matches like non-perfect matches
ignore_punctuation (optional): if false, does take into account the characters .,-_':;|?![]()
{}#@$%^&* and space

Example

<processor type="Match">
  <datatype>contact</datatype>
  <from_column>contact.customerid</from_column>
  <match_columns>contact.name contact.invoicezip</match_columns>
  <to_column>order.customerid</to_column>
  <display_string>{contact.name} ({contact.invoicezip})</display_string>
</processor>

This example would try to match contact.Name and contact.InvoiceZip columns that exist in both the input
data and the match data. Match data is obtained by querying the database specified by the processor's
connector for data of the specified datatype. In this case, the workflow could use order as datatype, whereas
this match processor compares only contact data. The result of the query, the contact.CustomerID value, is
placed in the order.CustomerID field of the input data.

Example 2



<processor type="Match">
  <datatype>person</datatype>
  <match_columns>person.LastName person.FirstName</match_columns>
  <from_column>person.Key</from_column>
  <to_column>person.Key</to_column>
  <match_data_for>person.CustomerID</match_data_for>
  <display_string>{contact.Name}: {person.FirstName} {person.LastName}</display_string>
</processor>

This example would try to match contact persons on existing persons -- but only for persons that share the
same customer ID as the person that is to be imported.

6.7 Math
Perform basic mathematic or string operations on data.

Configuration

column: name of column that will contain the result of the operation
expression: expression to evaluate, containing string data
where (optional): only performs calculations on specific rows

Example

<processor type="Math">
   <column>order.lineproductprice</column>
   <expression><![CDATA[double.Parse("{order.lineproductprice}") / double.Parse("1.19")]]>
</processor>

Example 2

<processor type="Math">
   <column>order.lineproductprice</column>
   <expression><![CDATA[double.Parse("{order.lineproductprice}") * double.Parse("1.45")]]>
   <where><![CDATA["{order.lineproductid}".StartsWith("EXTRAMARGIN")]]></where>
</processor>

Example 3: Combine with a Select processor to remove unwanted data

<processor type="Math">
  <column>order.grosstotal</column>
  <expression>0</expression>
  <where><![CDATA["{temp.periodstart}" == "{temp.periodend}"]]></where>
</processor>
 
<processor type="Select">
  <columns>order.grosstotal</columns>
  <where><![CDATA[`order.grosstotal` > 0]]></where>
</processor>

Example 4: See if an invoice has been paid

<processor type="Math">
  <column>temp.IsPaid</column>
  <expression><![CDATA[double.Parse("{order.AmountDue}") <= 0.00]]></expression>
</processor>

Example 5: Add a remark based on first 4 positions of zip code



<processor type="Math">
  <column>order.Reference</column>
  <expression>{order.Reference} - LOCAL</expression>
  <where><![CDATA[StringExtensions.InRange("{temp.Postcode}", "9170, 9172-9179", 4)]]></where
</processor>

Example 6: Put a person's last name if the company name is missing

<processor type="Math">
  <column>contact.Name</column>
  <expression>"{person.LastName}"</expression>
  <where><![CDATA["{contact.Name}" == ""]]></where>
</processor>

Example 7: Calculate costs based on cost price minus purchase price (because Mamut API can't import cost
price)

<processor type="Math">
  <column>product.Costs</column>
  <expression>double.Parse("{product.CostPrice}") - double.Parse("{product.PurchasePrice}")
</processor>

Example 8: Use supplier description when such a description has been given

<processor type="Math">
  <column>product.UseSupplierDescription</column>
  <expression>true</expression>
  <where><![CDATA["{product.SupplierDescription}".Trim().Length > 0]]></where>
</processor>

6.8 Merge
This function can be used to merge specified columns to one destination column.

Configuration

to_column: merged results are stored in this column
template: string containing column names between curly braces that will be replaced by the values
inside the columns

Example

<processor type="Merge">
  <to_column>contact.name</to_column>
  <template>{person.lastname}[, ]{person.firstname}</template>
</processor>

Note: if the template contains square brackets [ ], any text between those will be removed when no
replacements could be made (i.e., there was no data inside the original columns). In addition, single spaces
before or after a replacement field are discarded when the column code is replaced with empty data.

Using fixed values inside the Merge processor's template, you can set values for entire columns:

Example

<processor type="Merge">
  <to_column>order.UseLineGrossPrices</to_column>
  <template>true</template>



  <template>true</template>
</processor>
This will set the value inside the UseLineGrossPrices column to true for all lines.

6.9 MergeLines
This function can be used to merge specified rows to one destination row.

Configuration

key_column: field that is used to identify which rows are grouped together
sum_fields (optional): fields in the row whose values need to be added. If not specified, all data
columns that contain numeric data are summed.
where: specificies the where-clause the input-data must fulfill
product_bundles: merges all product bundles into the main product (boolean; use true or false)

Please note that either where or product_bundles must be specified, but not both.

Example

  <processor type="MergeLines">
    <sum_fields>order.linequantity order.linenetprice</sum_fields>
    <where>{order.lineproductid} like 'shippingcosts'</where>
  </processor>

Note: Merging lines that contain order.LineType fields, will result in the merged line having the value 1 in
this field.

6.10 MultiLookUp
Looks up multiple values in the Mamut database, based on an SQL query supplied in the processor.

Configuration

columns: the columns, separated by spaces, in which the result of the query will be placed
query: an SQL query on the Mamut database, containing field names enclosed in curly braces, e.g.
{Order.InvoiceID}

Example (looks up order ID and invoice ID based on reference)

<processor type="MultiLookUp">
  <columns>order.orderid order.invoiceid</columns>
  <query>SELECT orderid, invoiceid FROM g_order WHERE reference = '{order.reference}'</query
</processor>

6.11 Normalize
Replace non-ASCII (ë) characters with ASCII values (e). When done, it removes any character that's not one
of a-z, A-Z, 0-9, a space ( ) or a hyphen (-).

Configuration

columns: names of columns that should be normalized, separated by a space

Example



Example

<processor type="Normalize">
   <columns>order.invoiceaddress order.deliveryaddress</columns>
</processor>

6.12 OneTime
Lets values in a column through only one time. Any time thereafter, these values will not be exported by this
processor. You can use this, for instance, to keep track of order ID's that you have already sent through a
warehouse.

Configuration

column: name of column that contains values
write_updates (optional): true or false, determines whether updates are written to the data file (if
false, you can use the data file as a set-once exclusion list)

Example

<processor type="OneTime">
  <column>order.invoiceid</column>
</processor>

Note: a log of passed through values is stored in the processors/data folder.

Attention: A OneTime processor should always be last in the list of processors, since it takes into account
only changes that have been made before it is processed. Therefore, it does not play well with the UserSelect
processor since, ideally, you would want to discard already-exported data from the presented list. Alas, this
is currently not possible.

6.13 RegExSplit
This function can be used to split data over multiple columns, using regular expressions.

Configuration

column: name of column that contains the data that should be processed.
regex: the regular expression that matches against the input.
matches: names of the columns that should be used to list the data matched by the regular expression.

Example

<processor type="RegExSplit">
  <column>adrinvoice</column>
  <regex><![CDATA[
      ((?:\s?[\p{L}]+)+)\s?  #streetname
      (\d+(?:\s?\d+)?.*)\r\n  #number
      (.*)\r\n    #city
      (\d{4}\s?\w{2})\r\n #zipcode
      (.*)   #country
    ]]></regex>
  <matches>street number city zipcode country</matches>
</processor>

The column adrinvoice is used as input to the regular expression. Regex hits are grouped and these results
are then placed in the specified columns.



are then placed in the specified columns.

Important: It's necessary to escape whitespace using \s because whitespace is ignored by default.

6.14 Select
Selects specific rows from the input data. Please note that there seem to be issues using two select
processors after each other; better use AND within the WHERE node.

Configuration

where: specificies the where-clause the input-data must fulfill

Example

<processor type="Select">
  <where>{order.invoiceid} = 1</where>
</processor>

Example 2

<processor type="Select">
  <where>{order.invoiceid} = 1 AND {order.linenumber} > 2</where>
</processor>

Example 3 Producten uitfilteren die niet meegenomen mogen worden in een export.

  <processor type="Select">
   <where><![CDATA[{order.lineproductid} <> 'TRANSPORT']]></where>
  </processor>

6.15 Sort
Sorts the input data based on one or more fields.

Configuration

sort_fields: specifies the fields on which to sort, comma separated and with optionally the sort
direction as ASC (for ascending) or DESC (for descending)

Example: Sort contacts Z-A, and persons inside those contacts A-Z

<processor type="Sort">
  <sort_fields>contact.Name DESC, person.LastName</sort_fields >
</processor>

6.16 StringMap
This function maps values configured in the XML file with those found in the database.

Configuration

column: name of column.
mapping: specifies the searchstring and the replacestring, separated by '->' tokens.

Example



Example

<processor type="StringMap">
  <column>paymethod</column>
  <mapping><![CDATA[
    Automatische incasso -> GB
    Op rekening kopen -> BO
    Vooruitbetalen -> IDE
    iDEAL -> IDE
    Creditcard -> EM
  ]]></mapping>
</processor>

6.17 Sum
This function computes values and adds them together for rows that share a characteristic.

Configuration

destination: field name to which the computation is written.
expression: value calculation within the row, to add to the values of other rows.
group_by: fields that share the same value in this field will have their expression results summed in
the destination field
where (optional): only process rows for which this expression is true
remove_summed_lines (optional): removes rows which have been summed (convenient if you're
summing order totals, for instance)

Example: Calculate number of lines per order

<processor type="Sum">
  <destination>order.NumberOfLines</destination>
  <expression>1</expression>
  <group_by>order.OrderID</group_by>
</processor>

Example 2: Calculate 6% and 19% VAT amount total per order

<processor type="Sum">
  <destination>temp.Vat6Amount</destination>
  <expression>{order.LineVatAmount}</expression>
  <group_by>order.OrderID</group_by>
  <where>{order.LineVatRate} == 6</where>
</processor>
 
<processor type="Sum">
  <destination>temp.Vat19Amount</destination>
  <expression>{order.LineVatAmount}</expression>
  <group_by>order.OrderID</group_by>
  <where>{order.LineVatRate} == 19</where>
</processor>

Example 3: Calculate total turnover per country (export orders)

<processor type="Sum">
  <destination>temp.TurnoverTotal</destination>
  <expression>{order.NetTotal}</expression>
  <group_by>contact.InvoiceCountry</group_by>
  <remove_summed_lines>true</removed_summed_lines>
</processor>

6.18 UserSelectDateRange



6.18 UserSelectDateRange
Filter data using a date range.

Configuration-nodes

column: the column on which a date range can be applied
start_date (optional): use a predefined value for the start date field (use {today} to use today's date)
end_date (optional): use a predefined value for the end date field (use {today} to use today's date)

Example

    <processor type="UserSelectDateRange">
      <column>order.InvoiceDate</column>
    </processor>

6.19 UserSelect
Allow the user to filter data using a list of values.

Configuration-nodes

column: the underlying value column on which the filter will be applied
display_string: the display formatting (shown to the user) of the values

Example: Select only contacts from a specific country

    <processor type="UserSelect">
      <column>contact.invoiceCountryISO</column>
      <display_string>Contacts from {contact.invoiceCountry}</display_string>
    </processor>

6.20 UserVerify
Adds an in-between verification of the export data, that allows the user to acknowledge or cancel the export.

Configuration-nodes

columns: the columns that are shown in the verification dialog

Example

<processor type="UserVerify">
  <columns>order.orderid contact.name</columns>
</processor>

7 Scheduling (BETA)
Please mind that workflow scheduling is a capability that M-Port has only recently acquired. Scheduling has
not been tested as well as other parts of the product. This means that, for now, we strongly recommend using
a backup solution on all files that M-Port processes in scheduling. We do not recommend to use M-Port's
scheduling capability for vital business processes.

7.1 Command Line Interface (CLI) version



7.1 Command Line Interface (CLI) version

M-Port comes with a command line interface (CLI) version. This version allows for running workflows
without loading the M-Port interface. The EXE can be started from the command line with the following
parameters:

parameter description
/? displays help for command line parameters
/test does not run a workflow, but shows the data that will be written on the console

[workflow]
Specifies workflow to load. If no path is specified, workflow will be loaded from datastore
location.

7.2 Workflow Configuration
In the workflow, insert a <scheduling> section, such as this:

<scheduling>
  <log_path>[...]</log_path>
  <log_only_on_failure>[...]</log_only_on_failure>
  <success_path>[...]</success_path>
  <failure_path>[...]</failure_path>
  <failure_notification_email>[...]</failure_notification_email>
</scheduling>

Configuration

log_path (optional): A log-file that carries the name of the workflow's filename appended with the
execution date and time will be written to this folder.
log_only_on_failure (optional boolean; use true or false): Whether to write log files only when the
workflow fails (true), or also when it succeeds (false, this is the default setting).
success_path (optional): When used in conjunction with a file-type connector, moves successfully
processed files to this location
failure_path (optional): When used in conjunction with a file-type connector, moves files that
resulted in a workflow failure to this location.
failure_notification_email (optional): When the workflow fails, a detailed error log will be sent
to this e-mail address

7.3 Creating a Scheduled Task
When you load a workflow that has a scheduling configuration in the M-Port graphical user interface (GUI),
the Scheduling menu will be shown. This menu displays the scheduling information for the workflow,
allows you to open the Scheduled Tasks control panel applet, and allows you to create a new scheduled task
for the workflow.

Creating a scheduled task from the M-Port GUI ensures the path settings of the command line executable to
be properly set.

Workflows should be scheduled for the Administrator user of the domain or computer, and the checkbox for
'Run with highest priviliges' should be turned on.

7.4 M-Port Updates and Scheduled Tasks
Because M-Port uses a ClickOnce deployment method, each installation and update of the program will be



Because M-Port uses a ClickOnce deployment method, each installation and update of the program will be
placed in a separate folder on your computer. These versions and updates are specific to the current user.
Because each update changes the installation folder, the location of the M-Port CLI changes with every
update, too. That means that all workflows that have been scheduled need to be updated accordingly.

To counteract this behavior, M-Port creates a batch file in the default M-Port datastore location (see above);
this batch file always points to the latest version of the M-Port CLI. Every first run of M-Port after an update
takes care of updating the batch file's path.

8 Troubleshooting
More information on a particular error might be available in two files:

GBAe2apiErrors.txt, in the My Documents folder. This file contains most Mamut API errors and
might be a source for more information on the exact cause of a particular import failure.
_DbgMsgs.log, in the Mamut data area, in the System0001 path (i.e.,
\\SERVER\Mamut\Data\System0001\_DbgMsgs.log). This file contains database log messages from
Mamut.

8.1 No access to a particular company database
The API logs in using the first super user in the Mamut system database. If this user has no access to the
company database you're trying to connect to, this will give an error message in _DbgMsgs.log, containing
the username of the user that is used to log in. Using this username, give the user access to the database and
connecting should work.

9 Changes
v3.3.14 - 2012-04-25

Added: Field order.LineWarehouseID.

v3.3.13 - 2012-04-18

Fixed: Multiple bugfixes related to parsing XML files.
Fixed: AddLine processor to discard duplicate lines where appropriate.
Added: Field person.Groups.

v3.3.12 - 2012-02-03

Changed: Processor AddLines 'force_double' parameter.
Added: Fields project.Budget*.

v3.3.11 - 2012-01-13

Added: Processor AddLines.

v3.3.10 - 2012-01-06



v3.3.10 - 2012-01-06

Added: Field timesheet.LineDepartmentID.
Added: Field contact.OrderDiscountPercentage.

v3.3.9 - 2011-12-30

Added: Processor KeyValue.
Changed: Crystal Reports is no longer a prerequisite for installing M-Port. It can be downloaded
separately from http://software.redant.net/m-port/CRRedist2008_x86.zip.

v3.3.8 - 2011-12-12

Added: Fields order.Picked, order.Status.

v3.3.7 - 2011-11-18

Added: Field order.DirectDebit.

v3.3.6 - 2011-10-21

Added: Processor UserSelectDateRange.

v3.3.5 - 2011-09-30

Added: Workflow descriptions.

v3.3.4 - 2011-07-05

Added: Fields journal.DueDate, journal.Department, journal.DepartmentID, journal.Currency,
journal.CurrencyID, journal.CurrencyRate.
Added: Fields order.ServiceOrderText, order.ServiceOrderText2.

v3.3.3 - 2011-04-29

Added: ExcelFormat for reading of XLSX files (Excel 2007 and later).
Added: While writing to destination, M-Port now reports estimated time left until completion.
Added: User startable Debug-mode (press F6 after startup).
Added: Debug query executer in Debug menu.

v3.3.2 - 2011-04-08

Added: Processor MultiLookUp for finding multiple database values in one query.

v3.3.1 - 2011-04-01

Added: You can now insert products in structures using StructureProductID and QuantityInStructure.

http://software.redant.net/m-port/CRRedist2008_x86.zip


Added: You can now insert products in structures using StructureProductID and QuantityInStructure.
Added: Field product.StructureProductID, product.QuantityInStructure.

Added: Field order.PickListText, order.DeliveryNoteText.
Changed: Field product.ParentProductID is defined for variants, not structures.

v3.3 - 2011-03-25

Added: Field contact.FactoringNumber.
Added: Field order.DueDate.
Added: Fields product.NextDeliveryDate, product.AvailableStock.
Added: Field timesheet.LineToPayroll.
Added: Some error messages from Mamut API are now rephrased to be more understandable for end
users.
Added: Windows-1252 encoding to File, Folder and FTP connectors.
Added: A nice About screen :)
Changed: GUI rearranged updating to Help menu in order to make room for additional functionality.
Changed: Timestamp now contains a space instead of a - for the T marker.
Fixed: XmlFormat handling of documents with non-standard root nodes.
Fixed: XmlFormat handling of files starting with UTF8 byte order marker.
Fixed: Handling of double conversion to string now inserts a starting 0 before the decimal point.
Fixed: FixedFormat now properly normalizes string fields starting with a 0.
Fixed: Joining of data tables.

v3.2.2 - 2010-12-17

Added: Fields order.LineDeliveryDate, order.LineProject, order.LineProjectID.
Added: Fields order.TotalWeight, order.TotalVolume, order.ItemAmount, order.PalletAmount,
order.PickListText, order.DeliveryNoteText.
Added: StringExtensions.InRange for use in Math processor.
Added: QueryFormat now can execute a start_statement or end_statement before or after the line
queries, respectively.

v3.2.1 - 2010-11-19

Changed: MatchProcessor can now be terminated by using the X button.
Added: Fields order.AmountDue and order.CreditnoteGenerated.

v3.2 - 2010-10-15

Changed: Removed unnecessary converting to and from internal M-Port model.
Changed: Optimized memory usage.
Fixed: Field product.Costs (export).
Fixed: Match processor now properly auto-selects, even if sorted.
Added: MySQL connector now times out after 20 seconds.

v3.1.12 - 2010-10-08

Added: Fields order.ResponseType and .ResponseTypeID can now be imported, too.

v3.1.11 - 2010-10-01



Changed: Match processor now alphabetically sorts displayed data.
Changed: Queue outputs now automatically proceed when used in a scheduled workflow.

v3.1.10 - 2010-09-17

Added: Field order.AssociatedInvoiceID for credit notes.
Changed: Normalize processor only outputs characters from a-z, A-Z, 0-9, space and hyphen (-).
Changed: Reformatted changelog.
Fixed: When creating an order, fixed Mamut API behaviour that puts in today's date when no delivery
date is set.

v3.1.9 - 2010-08-27

Updated: MatchProcessor can now ignore punctuation marks.
Fixed: LookupProcessor now correctly displays lookup value when looking up a single field.
Fixed: Workaround for Mamut API random OK errors when applying processors before Mamut
destination.
Fixed: Format FixedWidth with multiple input files.

v3.1.8 - 2010-07-15

Changed: MatchProcessor can now check for matches for shortest string length only.
Changed: MathProcessor now replaces " with ' for field replacements in expression and where.

v3.1.7 - 2010-07-09

Added: Data type PurchaseOrder (export only).
Added: Field order.UseLineGrossPrices for importing orders with prices that include VAT.
Added: FieldPad for template editing.
Fixed: Behaviour of field product.IsStockItem and .IsServiceItem (mutual exclusion).

v3.1.6 - 2010-07-02

Fixed: Fields for person addresses.
Added: Support for replacement of field codes used inside {temp.Subject} and {temp.Body} when
used in Mail connector.

v3.1.5 - 2010-06-04

Added: MatchProcessor can now be configured to show perfect matches.
Added: MamutFormat can now create order lines without products (text only).

v3.1.4 - 2010-05-28

Added: Query modificators for other datatypes than order.
Added: Field person.IdentificationNumber.
Fixed: Exporting of timesheet lines with empty intervals.



Fixed: Exporting of timesheet lines with empty intervals.
Added: WebConnector now supports splitting of output.

v3.1.3 - 2010-05-21

Added: FTPConnector encoding.
Added: Field contact.IsMainOffice, .MainOffice, .MainOfficeCustomerID.
Fixed: MatchProcessor now starts counting at -1 when matching empty databases.

v3.1.2 - 2010-05-14

Added: Field order.LineQuantityDelivered.
Added: Field product.TotalStock, fields for product accounts.
Added: Percentage counter for most processors, and timer for long operations when in debug mode.
Added: Log path and setting for writing logs on success, for scheduled workflows.
Changed: MatchProcessor now has a setting to limit applicable match data, match_data_for.
Changed: Creation of persons now check/creates the associated contact, allowing importing of
contacts and persons in one workflow.
Fixed: Splitting inside MailConnector.

v3.1.1 - 2010-05-06

Added: Field product.VatRate and .PurchaseVatRate.
Added: Field product.IndividualDiscount, .IndividualPriceWithoutDiscounts and .IndividualPrice.
Fixed: Creation of variable path names in FileConnector.

v3.1.0 - 2010-05-03

This version is the first release that includes the M-Port CLI executable, for running workflows as scheduled
tasks.

Added: On first run after an update, CLI batch contents are updated.
Added: Workflow scheduling menu for creating and viewing scheduled tasks.
Added: GUI complety localized in Dutch, except for errors.
Added: Processor Sum, for summing lines grouped on a specific field.
Added: Processor Sort, for sorting columns.
Added: Field order.NumberOfLines.
Fixed: Joining of temp table in workflows that utilize multiple joined tables.
Removed: Languages menu due to incompatibility with referenced libraries (M-Port Core, etc.); M-
Port now always assumes the OS's language.

v3.0.3 - 2010-04-29

Added: HKEY_LOCAL_MACHINE key to override current user settings.
Changed: if both origin and destination connectors are database connectors, the preference for the
processor connector is now the destination instead of the origin.

v3.0.2 - 2010-04-28

Added: Datastore location can now be set on local machine key too.
Changed: Support mailer not longer dependent on mailto-client.



Changed: Support mailer not longer dependent on mailto-client.
Changed: Implemented data table viewer as a modal dialog (finally!).
Fixed: Improved MamutConnector error messages when no instance, system or company database has
been selected.

v3.0.1 - 2010-04-27

Changed: Added explanatory exceptions for common lookup functions (project, supplier id, employee
id, contact id).
Added: Field contact.OurReferenceID, AccountOnHold.
Added: Field product.ContactKey and .CustomerID. There are not linked with contact table yet.
Fixed: Query format now only transforms field syntax when retrieving data ({.} -> _).

v3.0.0 - 2010-04-23

This version is a huge rewrite of M-Port internals, in order to prepare for workflow scheduling.

Changed: Moved datastore from isolated storage to a common application data folder.
Changed: Exceptions thrown now show late bound class name instead of LazyType.
Changed: Support mailer now includes log and Mamut API error log.
Changed: Moved split directive from formats to connectors.
Changed: All User* processors now cancel workflow execution when dismissed.
Changed: MergeLinesProcessor can now merge lines of any datatype, not just orderlines.
Changed: MySqlConnector now uses late binding to MySQL Connector/NET.
Changed: QueryFormat now uses M-Port field notation instead of underscored fields.
Changed: Data table viewer now displays nice column names.
Changed: LookupProcessor now supports fields as default value.
Added: FolderConnector for reading file batches.
Added: Action Open in Notepad for File connector.
Added: Datatype Journal can now be read as well as written.
Added: Everywhere fields are used, {timestamp} is now replaced with the current sortable date and
time.
Added: Field order.ProductionDate.
Added: Field journal.LineDescription, LineCostLayout, LineCostCenterGroup, LineCostCenter.
Added: Fields project.Responsible and project.ResponsibleID.
Added: Fields contact.ResponseType, ResponseTypeID, Currency, CurrencyID.
Added: Fields person.Project, person.ProjectID, person.Memo.
Fixed: Tab order for UserSelectRange processor.
Fixed: MamutConnector max string length now > 256 characters.
Fixed: M-Port now runs Mamut workflows on 64-bit systems (Mamut API requires target platform to
be x86).

2010-03-30

Fixed: Fields product.IsStockItem and product.IsServiceItem are now mutually exclusive.

2010-03-29

Added: Fields for product settings.

2010-03-24



2010-03-24

Added: Field employee.Name.

2010-03-22

Added: Datatype activity.

2010-03-17

Added: Datatype currency. Fixed Mamut API bug regarding setting of exchange rates.

2010-03-16

Changed: XmlFormat now allows for parsing of files with inline schemas.
Added: WebConnector for communicating with SOAP compliant webservices.
Changed: Fields contact.SyncID and person.SyncID are now strings.

2010-03-11

Changed: Field contact.Project and contact.ProjectID now create a project link.

2010-03-04

Added: now displays percentage complete for workflows that have Mamut as destination.

2010-03-03

Improved: Parsing of 'first level has multiple nodes' XML template files.

2010-02-02

Added: Fields product.Department, product.DepartmentID, product.Project, product.ProjectID.

2010-02-23

Changed: Field order.FreightBillText can now be written to.
Added: Field order.ShipmentNumber.

2010-02-22

Improved: Parsing of complex XML template files.

2010-02-18

Changed: Mamut sets Project to orderlines when Project has been assigned to order, Mamut API



Changed: Mamut sets Project to orderlines when Project has been assigned to order, Mamut API
doesn't. M-Port now behaves like Mamut.

2010-02-17

Fixed: Now properly shows error when access rights on isolated storage do not allow opening of
workflow.

2010-02-16

Added: Format Mamut now supports updating of orders, either by adding new lines or updating
existing lines.
Fixed: Format Field now correctly distinguishes between one and multiple regex line identifiers.

2010-02-08

Changed: Processor Select no longer requires 'columns' node.

2010-02-04

Changed: Removed workaround in AddressProcessor for country codes in the g_country table that
were used twice. This is fixed in MBS 12.5.
Changed: Workaround still applies for versions < 12.5.7897.

2010-02-01

Added: Now returns latest Mamut API error from API error log file, when available.

2010-01-29

Added: Query modificators (limit, order_by, where) for order export from Mamut.

2010-01-22

Added: Orders now support person data on export.
Changed: Empty person.* fields now no longer create empty company contacts on import.

2009-12-21

Added: Fields product.CommodityCode, IndustryProductID, and Www.
Changed: Fields product.WarehouseLocation and WarehouseLocationID now check for existing
locations.
Fixed: Fields product.Unit, UnitID, and Subgroup3.

2009-12-18

Changed: Now compatible with MBS 12.5.
Added: Fields project.Completion and CompletionID, and product.SupplierDeliveryTime.



Added: Fields project.Completion and CompletionID, and product.SupplierDeliveryTime.
Changed: product.WarehouseLocation is now automatically created if new.

2009-12-15

Added: Fields product.WarehouseLocation and product.WarehouseLocationID.
Changed: Most standard register fields now are check created instead of looked up.

2009-12-08

Changed: Processor MergeLine now can merge product bundles automatically.

2009-12-07

Added: Field order.LineType.
Added: Fields product.SurchargeID, product.SurchargeGroup, product.SurchargeDescription.
Added: Model table OrderlineMatrix (10x10 matrix with headings).
Fixed: Now throws error when setting store link values when no warehouse ID is specified.
Changed: When setting a new warehouse for a product, stock is assumed 0 when not supplied.

2009-12-03

Added: FieldFormat.
Added: Field order.LineTracingNumber.

2009-12-02

Added: XSL transformations added to XML format.

2009-11-26

Changed: Error dialog now hides details by default.
Fixed: Order lines with missing information now behave as expected in Mamut.

2009-11-25

Added: Field product.OverrideSalesCostPrice.

2009-11-24

Added: MySqlConnector. Requires installation of MySQL Connector/Net
(http://dev.mysql.com/downloads/connector/net/).
Changed: SqlConnector is now compatible with QueryFormat's PutContents.

2009-11-20

Fixed: FileConnector when both regex replace and multiline regex replace were used.

http://dev.mysql.com/downloads/connector/net/


2009-11-19

Added: Field contact.CreditLimit.

2009-11-12

Added: Processor MergeLinesProcessor. Can merge multiple lines and sum fields therein.
Changed: Processor SelectProcessor now accepts {} instead of backticks for fields.

2009-11-11

Added: Processor MathProcessor. Can perform calculations on input data.

2009-11-09

Changed: QueryFormat can now put contents (e.g., write custom update queries). Queue is enabled for
this format.
Fixed: Workflow/customer names with ampersands are now properly shown in workflows menu.

2009-11-05

Added: Fields contact.DeliveryMethod, contact.DeliveryMethodID, contact.DeliveryTerms,
contact.DeliveryTermsID.

2009-10-30

Changed: MailConnector now detects empty e-mail addresses.

2009-10-29

Added: FileConnector and FTPConnector now support multiline regex replace.

2009-10-28

Added: Queue window for processing multiple (split) exports.
Added: MailConnector now accepts queue adding and processing.
Changed: OneTimeProcessor does not store values that generated errors in queue.

2009-10-21

Added: Field product.RecommendedSalesPrice (excl. VAT!)
Added: Field product.Inactive -- with new behaviour (exports only active products, unless this field is
included).
Changed: Processor UserVerify now shows total of displayed rows instead of total data rows.
Changed: Field product.SupplierPrice now correctly calculates and sets price in local currency.
Removed: DummyFormat, DummyConnector.



2009-10-20

Added: Field product.PictureLink2.
Added: Registry keys to determine customer and debug mode.

Ontvangen van "http://wiki.redant.net/index.php/M-Port_Integrator_Manual"

Deze pagina is het laatst bewerkt op 1 jun 2012 om 08:53.

http://wiki.redant.net/index.php/M-Port_Integrator_Manual

